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An analysis is presented for electrophoretic motion of a charged non-conducting 
sphere in the proximity of rigid boundaries. An important assumption is that KU + a, 
where a is the particle radius and K is the Debye screening parameter. Three boundary 
configurations are considered: single flat wall, two parallel walls (slit), and a long 
circular tube. The boundary is assumed a perfect electrical insulator except when the 
applied field is directed perpendicular to a single wall, in which case the wall is 
assumed to have a uniform potential (perfect conductor). There are three basic effects 
causing the particle velocity to deviate from the value given by Smoluchowski’s 
classic equation: first, a charge on the boundary causes electro-osmotic flow of the 
suspending fluid ; secondly, the boundary alters the interaction between the particle 
and applied electric field; and, thirdly, the boundary enhances viscous retardation of 
the particle as it tries to move in response to the applied field. Using a method of 
reflections, we determine the particle velocity for a constant applied field in increasing 
powers of h up to O(AB), where A is the ratio of particle radius to distance from the 
boundary. Ignoring the O(Ao) electro-osmotic effect, the first effect attributable to 
proximity of the boundary is O(A9) for all boundary configurations, and in cases when 
the applied field is parallel to the boundaries the electrophoretic velocity is 
proportional to [,-&, the difference in zeta potential between the particle and 
boundary. 

1 Introduction 

viscosity 
Smoluchowski’s formula : 

The electrophoretic velocity of a single colloidal particle suspended in a fluid of 
and dielectric constant E is related to the applied electric field by 

U o = ( 2 ) E a y  

where cp is the ‘zeta potential’ of the particle surface, which is normally taken to 
be the electrostatic potential at the inner edge of the diffuse part of the electrical 
double layer surrounding the particle (Adamson 1982; Hunter 1981). The ratio 
U,/E,  is defined to be the electrophoretic mobility, and equals the term in 
parentheses, the magnitude of which is typically of order (pm/s)/(V/cm). The 
Smoluchowski equation applies to particles of any shape (Morrison 1970), and there 
is no rotation of the particle. 

Several assumptions were made to derive (l.l),  and the subscript 0 on U, is used 
to emphasize the existence of these assumptions. First, yp must be uniform over the 

t Present address : Department of Chemical Engineering, National Taiwan University, Taipei 
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surface of the particle, at  least over distances comparable to the particle dimension. 
‘Discrete-charge ’ effects, reflecting the existence of heterogeneity in surface charge 
on lengthscales O ( K - ~ ) ,  where K - ~  is the Debye screening length, do not seem to be 
important, except that they might slightly alter the value of CP from that predicted 
by the classical Gouy-Chapman theory of the diffuse double layer (Levine, Mingins 
& Bell 1967). Another assumption is referred to as the ‘ thin-double-layer approxim- 
ation’, or ‘Helmholtz limit ’, and requires that K - ~  be infinitesimal relative to particle 
dimensions; for a sphere this would mean KU + co where a equals the sphere radius. 
In the derivation of ( l . l ) ,  a constant applied field has always been assumed; however, 
in $ 3 of this paper we show that this assumption is unnecessary and (1 .1)  holds even 
if Em varies over distances comparable to the particle size. The fourth assumption 
is that the particle is suspended in an infinite fluid, meaning that boundaries are 
sufficiently far removed from the particle so that they have negligible effect on the 
electric and fluid velocity fields associated with the particle. In this paper, we relax 
this assumption and examine how certain rigid boundaries affect electrophoretic 
motion. 

Most attention in the literature has been paid to the thin-double-layer approxim- 
ation, and several monographs (e.g. Dukhin & Derjaguin 1974; Hunter 1981) review 
progress in this area. In the past several years important advances have been made 
in developing analytical expressions to correct (1 .1)  for finite KU of spherical particles 
(e.g. O’Brien & Hunter 1981), and extensive numerical results are available for a wide 
range of KCZ and Cp (O’Brien & White 1978). These show that the thin-double-layer 
approximation is accurate when 

cosh (ZeCp/2kT) < 1,  (1.2) 

where Z is the charge number of the electrolyte, assumed the same for both ions, and 
e is the charge of one proton. 

In  the application of electrophoresis to particle analysis or separation, natural 
convection of the suspending fluid due to ohmic heating and non-uniform heat 
transfer creates problems. To avoid such mixing, porous media are often used to 
contain the suspension. Porous membranes could even be used to achieve high electric 
fields and separation of particles by both size and charge. Other examples of bounded 
systems include electrophoresis of small particles through porous rock, through 
coatings formed by larger particles, and through a Coulter counter designed not only 
to count and size the particles but also to determine their zeta potentials (DeBlois 
& Bean 1970). In all such systems one must question the applicability of (1 .1)  and 
determine if the boundaries significantly affect movement of the particles. 

Here we model the electrophoretic motion of spherical, uniformly charged particles 
near rigid boundaries of different configurations. In all cases the thin-double-layer 
limit (KU+OO) is taken. Only single particles are considered, and hence the results 
are limited to  dilute suspensions. The applied electric field is assumed constant over 
distances comparable to the particle radius. The proximity of rigid boundaries leads 
to two effects. First, the interaction between particle and electric field is altered by 
the boundary, an effect that tends to enhance the electrophoretic velocity. Secondly, 
the fluid dynamics are affected in a way that tends to slow the particle. The second 
effect is stronger in the cases we have studied, and hence the net effect is a retardation 
of the particle’s velocity. 

In $2 the governing equations for mass and charge transport, fluid flow and 
electrostatics are organized and simplified through scaling arguments in two defined 
regions, ‘inner ’ and ‘outer ’, where the former is the fluid contained within distances 
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O(K-’ )  from the particle surface and from the boundaries. Because large K a  is 
assumed, the equations of the inner region can be integrated directly to provide 
surface conditions for the outer region, consistent with the analysis of 0’ Brien (1983). 
Section 3 contains a brief derivation that shows that (1.1) applies to unbounded 
systems in which the undisturbed field E,  varies appreciably over distances 
comparable to a, with E, evaluated at the position of the particle’s centre. This result 
is used, along with Faxen’s law for the velocity of a force-free sphere suspended in 
an arbitrary velocity field, to reflect the electric and velocity fields between particle 
and boundary. The correction for the boundary is presented in a power series in A : 

where A equals the ratio of particle radius to the distance of the particle centre from 
the boundary. The first effect of finite A is O(h3), rather than O(A) as for problems 
involving sedimentation (Happel & Brenner 1973)’ so boundary effects on electro- 
phoresis are relatively weak. In  situations where the boundary is non-conducting 
and E,  is directed parallel to it, the coefficients b ,  are proportional to I&,-[,,,, the 
difference in zeta potentials between particle and boundary. The wall potential enters 
in these cases because the applied field interacts with the double layer at the boundary 
to produce an electro-osmotic flow. Section 4 is concerned with a single flat wall, while 
movement of a particle along the axis of a long slit or circular pore is considered in 
$5. The main results are given in (4.16), (4.26), (5.9) and (5.19)’ which apply to open 
systems where no pressure gradients are established to control the overall volumetric 
flow (as discussed in $6). 

2. Governing equations for thin double layers 
By ‘thin’ double layers we mean situations where transport processes outside the 

double layer have negligible effect on the ion distributions within the double layer, 
and hence these distributions are determined by the equilibrium structure of the 
double layer. The criterion for this is given by (1.2). Furthermore, we wish to model 
the fluid/solid interface as an infinite flat surface on lengthscales of K - ~ .  If the smallest 
principal radius of curvature of the interface is a* then the flat-plate model has an 
error O(Ka*)-’ ; therefore letting Ka* --+ 00 allows the flat-surface approximation. 

The fluid phase is divided into two regions : (1 ) an ‘inner ’ region defined as the 
double layer adjacent to the particle and the solid boundaries, where the important 
lengthscale is the Debye length K - ~ ;  and (2) an ‘outer’ region defined as the 
remainder of the fluid, where the particle dimension is the approximate lengthscale 
(see figure 1 ) . Because the space charge density p, approaches zero as exp ( - ~ g ) ,  where 
$ is the distance from an interface, the outer region is electrically neutral (p ,  = 0). 
The steady-state electrostatic and transport equations applicable to both regions are 
the following: 

V * N ,  = 0, (2.4) 
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X 

FIQURE 1. (a) Sketch of inner and outer regions of the fluid phase for a colloidal sphere near a solid 
boundary. (b)  Geometry of the inner region (the double layer adjacent to the fluid/solid interface, 
with a thickness O ( K - ~ ) ) .  

V - X  2, eNi = 0, (2.5) 
L 

p, = X ZieCi .  (2.7) 
L 

Equation (2.1) is the Poisson equation, while (2.2)-(2.3) are the Stokes equations. 
Equation (2.6) is the NernstrPlanck equation for the flux Ni of ionic species i having 
charge 2, e per ion, where e is the charge of one proton, and diffusion coefficient D,. 
There is some question as to the accuracy of the NernstrPlanck equation at 
moderate-to-high ion concentrations (say 2 10-1 g mol/litre), but it is really needed 
here only to provide scaling arguments to allow solution of (2.2) inside the double 
layer. @ is the electrical potential relative to the potential the fluid would have at 
the position x, of the particle if the particle were not there. Equation (2.5) is 
redundant with (2.4), but is useful in the outer region (p ,  = 0) to decouple u from 
the calculation of @(x), since (2.1) cannot be used there (Newman 1973). 

The boundary conditions a t  the fluid/solid interfaces of the particle and the 
boundaries are the following : 

n * N L  = n.v*C,, u = u*,  n * V @  = --r. (2.8a, b ,  c) 
4.11. 
6 
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n is the unit normal pointing into the fluid phase. Equation ( 2 . 8 ~ )  means no charge 
can be conducted across the surface, consistent with our assumption that the solid 
phases are non-conducting. v* is the velocity of the interface, equal to zero for the 
fixed solid boundaries and U+ sd x r for a particle translating at velocity U and 
rotating at angular velocity 0. Equation ( 2 . 8 ~ )  is the Gauss condition at the ‘slip 
plane ’ of the double layer, with CT equal to the charge density. CT is assumed constant 
on the interfaces, but could differ in sign and magnitude between particle and 
boundary. Possible Stern-layer effects are not considered in this analysis. Far from 
the particle in the outer region the conditions are 

C p C , ,  = constant, @+Om(x), (2.9a, b) 

where @, satisfies Laplace’s equation. 

Inner region 

Variables in this region are denoted by a hat ( - )  over them. Let R, be a position on 
the fluid/solid interface, either on the particle or boundary, and 2 be a position within 
the fluid portion of the double layer adjacent to the interface. A local coordinate 
system is defined by (see figure 1 b) 

&-It, = in+#, (2.10) 

such that the fluid/solid interface is described by = 0 with an error O(KU*)-’. n is 
the unit normal at R,, and d is the two-dimensional position vector from R, in the 
tangent plane. The scale of tj is K-~. By examining (2.1)-(2.7) we find the following 
characteristic values : 

(2.114 

(2.11b) 

(2.11c) 

(2.1 1 d )  

E ,  is the magnitude of the applied electrical field (Em = I V@, I). In the limit KU-+ 00 

(2.1) and (2.4)-(2.7) can be used with the above characteristic values and boundary 
condition ( 2 . 8 ~ )  to show that 

= $(@) + &b($), (2.12) 

where $ is attributable to the interfacial charge CT and is independent of d as long 
as the C, are constant in the outer region (as they are). $ is O(kT/e)  and decays to 
zero as exp ( -  KQ) ,  while &., must match with the electrical potential determined from 
the equations of the outer region. 

Combining (2.12) with (2.1) and (2.2) and using the characteristic values in (2.11), 
the following is obtained when KU+ co : 

(2.13) 
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where O@) = (/-nn).B and /is the unit dyadic. Integrating twice over 9, with ‘no slip’ 
at  the fluid/solid interface (g = 0), gives 

(2.14) 

where 5 is the zeta potential, defined as $ ( O ) .  The first term on the right-hand side 
of (2.14) is the well-known Helmholtz expression for electro-osmotic flow induced by 
an electric field tangent to a solid surface. To O((m)O) the normal component of fluid 
velocity is On = n.v*. Combining the normal and tangential components and letting 
fj-t 00, we have fluid velocity at the outer edge of the double layer: 

(2.15) 

where it is understood that E, = -i3&,,/ai and is perpendicular to n. The interfacial 
velocity of the particle is 

v * =  U+sdxr ,  

where U is the velocity of the reference point x, in the particle, sd is the angular 
velocity and r = x-x, evaluated on the solid/fluid interface. u* equals zero for the 
fixed boundaries. 

Outer region 

The appropriate lengthscale is a*. Since the ion concentrations are uniform far from 
the particle and outside the double layer of the boundary, and pe is essentially zero 
in the entire outer region, (2.4)-(2.6) can be used to show that all C, are constant in 
the outer region. Equation (2.5) thus reduces to 

V2@ = 0, (2.16) 

with boundary condition (2.9b). Let R represent the surfaces of the particle and 
boundary as approached from the outer region. The behaviour of @ in the vicinity 
of R must be consistent with in the limit y+00. From (2.12) we see that the 
appropriate condition on the surfaces of the outer region is 

n-VQ,=O onR.  (2.17) 

This condition says that no current can be conducted into the double layer, because 
it is so thin relative to a*. Solving (2.16) with (2.9b) and (2.17) and evaluating Q, a t  
x + R  gives the value of E, to be used in (2.15): 

E, = lim (-V@). 
x+R 

(2.18) 

Given the surface velocity u,, as calculated from (2.15) and (2.18) on all points R 
on the surfaces of the particle and boundary, the velocity field can be determined 
from the Stokes equations : 

7 v 2 v - v p  = 0, v - v  = 0, (2.19a, b )  

(2.20 a)  

(2.20 b )  

u = U+a x r+ - ( / -nn)*V@ 4 on the particle surface, 
4x7 

v = - €6 ( / -nn)*V@ on the boundary surface, 
4x11 
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where we understand the term ‘surface’ to mean outer limit of the double layer. 
Because the particle surface encloses a neutral body (i.e. charged interface plus 
oppositely charged, diffuse space charge) and the particle is freely suspended in the 
fluid, the electric field produces no force or couple on the particle. Thus the force and 
couple by the fluid on the particle surface must be zero: 

4 = n - r d Y  = 0, T - r x  (n*.e)dY = 0, (2.21 a, b )  f-ll 
particle surface 

JJ 
particle surlace 

where T is the stress dyadic. By satisfying (2.21 ) , U and a are determined. Maxwellian 
(electrical) terms are omitted from T because in this problem they would contribute 
only at O(@,), while we consider only linear phenomena. 

Because the solid phases of the particle and boundary are assumed non-conducting 
in all but one derivation, there is no need to model the electrostatics of these phases. 
This assumption leads to boundary condition (2.17) for the electric field in the outer 
region. In the one exception (see §4), in which a particle moves normal to an infinite 
plane wall, the boundary is assumed to be a perfect conductor (i.e. an electrode), so 
that (2.17) is replaced in this case by the following: 

(2.22) I @ = constant 

n V@ = 0 

on the boundary surface, 

on the particle surface. 

The reason for this change is that it is not realistic to have a constant undisturbed 
field -VOW directed normal to a plane wall and simultaneously satisfy (2.17). 

In  summary, matched expansions for electrical potential and fluid velocity have 
been constructed in the limit KU* -t 00, where a* is the principal radius of curvature 
of the interface between solid and fluid. The inner region produces condition (2.17) 
or (2.22) for @ in the outer region and conditions (2.20) for V .  The strategy is to solve 
(2.16) for @(x), using (2.17) and (2.9b), then solve (2.19) and (2.20), and finally satisfy 
(2.21) to obtain U and f2. A ‘method of reflections’ (Happel BE Byrne 1954) will be 
used to account for interactions between the particle and the boundary. 

3. Fluid dynamics for a sphere in an arbitrary electric field 
A non-conducting sphere of radius a and uniform zeta potential Cp is instantaneously 

positioned at x, in an unbounded fluid. The relative position vector r is defined as 
x-x,. The thin-double-layer assumption (KU+ co) is applied. In the absence of the 
sphere, the electrical potential is V,(x)t such that Ia2VVVA1 could be comparable 
to laVV,I. To find the translational and angular velocities of the sphere, as well as 
the resulting velocity field in the fluid, we must solve Laplace’s equation for V(r )  and 
the Stokes equations for o(r) in the outer region, T-a  % K - ~ ,  as indicated in $2. 

The electrical disturbance caused by the sphere, V* = V -  V,, is governed by 

V2V* = 0, (3.1) 

n.VF.‘* = -n*vVA ( r  = a+), ( 3 . 2 ~ )  

V*+O (r-tco),  (3.2b) 

where n is the unit normal, and T = a+ designates the outer edge of the double layer. 

t In this section we use V for the potential instead of @. 
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Note that V,(x) is assumed to satisfy Laplace's equation as well. A general solution 
to (3.1) that satisfies the second boundary condition is 

where the S, are surface harmonics, which are mth-order polyadics defined by 

and the symbol [* I  represents m scalar products. If the brackets (f} denote an 
average off over the surface of a sphere, 

1 

Sm = r m f l v m  ( r - 1 1' (3.4) 

(3.5) ( f )  = &jp Jl_.fd% 

it can be shown that the S, are orthogonal when such an average is taken: 

<S,S,> = 0 if m 9 n. 

The polyadic coefficients B, are determined by expanding the right-hand side of 
( 3 . 2 ~ )  about r = 0 and comparing with (3.3). The first few terms are 

B, = - $ 3 ( v v A ) 0 ,  B, = h a " ( v v V A ) o ,  B, = -+j@'(vVv~A)o, ( 3 . 6 ~ ,  b , ~ )  

where the subscript 0 denotes evaluation at x = xo. Using these results and realizing 
that V, satisfies Laplace's equation, we have 

The disturbance to the electric field is obtained by taking the gradient of (3.7) : 

Note that the disturbance to the field is weak, decaying as r-3. The electric field at 
the particle surface (Es), including both the original field plus the disturbance, is 

Es = [ f ( E A ) O + ~ n ' ( V E , ) o + O ( a 2  VVEA)o]* [ I -nn] .  (3.9) 

Because the particle is assumed to be non-conducting, this field is directed in the plane 
of the surface and has no normal component. 

In order to obtain the particle velocity and the fluid velocity field, we employ 
Lamb's general solution as outlined by Brenner (1964~).  If U and Jz are the 
translational and angular velocities of the particle, we can express the fluid velocity 
at the particle's surface (or, more precisely, at  the outer edge of the double layer) using 
the solution for flow in the double layer that was developed in $ 2 :  

.Y us = lim ( 0 )  = U+aSdxn-JE, .  
r + a +  4x7 

(3.10) 

The velocity and pressure fields for r > a are completely specified when the 
coefficients a,, P,, ym are determined at r = a+ using the following: 

m 

m 

m 

a n * ( V  x us)  = x y,[*]Sm. 
m-1 

(3 .11~)  

(3.11 b)  

(3.11~) 
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The force and torque applied by the fluid on the surface r = a+ are given by 

F p  = 2x7u[3a1 +&I, Tp = 4x7a2y1. (3.12a, b) 

According to arguments in $2, by setting I$ and Tp equal to zero we shall obtain U 
and 51. 

There is no rotational motion in this problem, because sp is constant and the electric 
field is the gradient of a scalar. After substituting (3.10) into the left-hand side of 
(3.11c), we have 

m 
2a-n-S) = Z ym[*]Sm, 

m-1 

yr = - 2 4  
1 (3.13) 

Ym - 0  - f o r m + l . I  

By setting TI = 0 and using (3.12b), we find 

51 = 0, (3.14) 

as a general result for any imposed field EA as long as V.EA = 0. 

and (3.11 a) we have 
The translational motion is described by the coefficients a, and p,. From (3.10) 

(3.15) I a, = - U, 

am=O f o r m 9  1. 

Multiplying (3.11b) by Sl = --n and averaging over r = a+, we obtain 

(3.16) 

The particle’s translational velocity is found by combining (3.12u), (3.15) and (3.16), 
and then setting F, = 0 :  

(3.17) 

This result is identical with Smoluchowski’s equation, which, to our knowledge, has 
heretofore only been derived for constant EA. We emphasize that (3.14) and (3.17) 
are only valid when KU % cosh (Zecp/2kT) and sp is constant on the psrticle/fluid 
interface. Dielectrophoresis (U - VEA) occurs only when there is a dipole, that is, 
Cp is not uniform (Anderson 1985). 

Although non-zero derivatives of the applied field have no effect on the particle 
velocity, they do contribute to the fluid velocity field through the coefficients p,. If 
terms O(VVEA) are ignored, only jY1 and Pe are needed, with the latter obtained from 
(3.9), (3.10) and (3.11b): 

The velocity field about the moving particle is 

(3.18) 

(3.19) 
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where the functions $-(m+l) and P-(,+~) are given by Brenner (1964a) and are 
O ( T - ( ~ + ~ ) ) .  After evaluating $-2, q5-, and p- ,  from a,, Pl and p2, we have 

To leading order in electric field, v decays as r-,, rather than as a Stokeslet or force 
dipole. Such an unbounded velocity field is characteristic of ‘ phoretic ’ motions, that 
is movement caused by conservative forces operating only within a thin fluid region 
at the surface of a particle (Anderson, Lowell I% Prieve 1982; Anderson 1983). 
Curiously, the O(VEA) contribution decays more slowly than does the O(EA) velocity 
field ( T - ~  versus r-,). This observation is important in $54 and 5 when computing 
reflected velocity fields between particle and boundary. 

The unbounded velocity field caused by a force-free rigid sphere in an arbitrary 
undisturbed flow can be determined from the analysis of Brenner (1964b). In the 
analyses of $54 and 5 the particle disturbance to each wall-reflected electrical 
potential will be computed from (3.7) ; while the particle velocity disturbances caused 
by each wall-reflected potential and velocity field will be computed from (3.20) and 
Brenner’s analysis (1964 b) respectively. 

4. Electrophoresis near single walls 
We consider in this section the electrophoretic motion of an insulating sphere of 

radius a in the direction either parallel or perpendicular to an infinite flat wall located 
at a distance b from the sphere centre. For the case in which a uniform electric field 
- V@, is imposed parallel to the plane wall, the wall is assumed to be non-conducting 
and the boundary condition (2.17) applies; while, for the case where the direction of 
-V@, is perpendicular to the wall, the wall is assumed perfectly conducting and 
(2.22) is the appropriate boundary condition as noted in $2. In both cases the sphere 
centre is chosen to be the origin of the coordinate frame, as shown in figure 2, and the 
applied electric field is expressed by E ,  e,. Here (z, y, z), ( p ,  $, z )  and ( r ,  0,4) are 
Cartesian, circular cylindrical and spherical coordinates respectively. The effect of 
the wall on the electrophoretic velocity of the particle is sought in an expansion of A, 
which equals the ratio of particle radius to distance between the wall and centre of 
the particle. 

Motion parallel to an inJnite wall 

For the problem of electrophoretic motion parallel to an insulating plane wall, as 
depicted in figure 2(a), (2.16) and (2.19) must be solved by satisfying the following 
conditions derived from (2.9b), (2.17), (2.20) and (3.14) when Ka-+ 00 : 

e;V@ = 0, 1 
( r  = a ) ;  

e,-V@ = 0, 

(4.1 a) 

(4.1b)t 

( 4 . 2 ~ )  

(4.2 b)  

t The velocity field reflected from the wall may produce a non-zero Ja, but this free rotation haa 
no effect on U. 
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I 
I 
I 
1-b 
I 

FIGURE 2. Electrophoresis of a spherical particle near single walls: (a) motion parallel to an 
infinite plane; (b)  motion normal to an infinite plane. 

( 4 . 3 ~ )  

(4.3b) 

CP and t;, are the zeta potentials of the sphere and of the wall respectively. The far-field 
condition (4.3 b) accounts for the undisturbed electroosmotic velocity of the fluid 
outside the thin double layer caused by the presence of the charged plane. In  this 
problem, the translational velocity U of the sphere is what we need to evaluate. 

For the motion of a uniformly chargqd sphere under an arHitrary applied electric 
field EAx) and velocity field vA(x) in an unbounded fluid, U can be found by 
combining (3.17) and Faxen’s law (Happel & Brenner 1973) in the limit of Ka+ 00 : 

where subscript 0 denotes the position of the sphere centre. It is easily demonstrable 
that Faxen’s law (the second and third terms on the right-hand side of (4.4)) applies 
to a charged sphere in the limit Ka+co .  The superposition of the electrostatic and 
hydrodynamic contributions in the above equation is valid because governing 
equations in the region outside the thin double layer are linear. 
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In  the situation h = a/b 4 1 a method of reflections is used to solve the problem. 
The solution consists of the following series, whose terms depend on increasing powers 
of A :  

@ = @$) + + + @(2) P + @(a w + .*., (4.5~) 

(4.5b) 

where subscripts w and p represent the reflections from wall and particle respectively, 
and the superscript (i) denotes the ith reflection from that solid surface (or, more 
precisely, from the outer edge of the thin double layer). In these series, all the sets 
of the corresponding electrical potential and velocity must satisfy (2.16) and (2.19). 
The advantage of this method is that it is necessary to consider boundary conditions 
associated with only one surface at a time. According to (4.5), the particle velocity 
can also be expressed in the form of a series 

u = u ~ ) + u ~ ) + u ~ ) + o ~ ) + u ~ ) +  ... , 

u = U O ) +  Ul)+ U Z ) +  ... , (4.6) 

where each V*) is related to A’$) (=  -V@g)) and 0:) by (4.4), because the fields 
reflected from the wall can be thought as imposed on the particle in an unbounded 
medium. 

The electric and velocity fields unperturbed by the presence of the particle are 

which give 

(4.7 a, b) 

(4.7c) 

This result is a superposition of Smoluchowski’s relation for electrophoresis and the 
Helmholtz equation for electro-osmotic flow caused by the charged wall in an ‘open ’ 
system, that is, no pressure gradients are established to counteract the electro-osmotic 
flow. 

The boundary conditions for the ith reflected fields from the particle are derived 
from (4.1) and (4.3): 

(4.8~) 

(4.8d) 

where i = 1,2, . . . . The solution for the first reflected fields, which satisfy (2.16) and 
(2.19) and the above boundary conditions, is obtained from (3.7) and (3.20): 

(4.9~) 

(4.9b) 

where (4.9c) 
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The velocity distribution shown in (4.9b) is an irrotational flow around a sphere 
moving with velocity Uoe,. 

The boundary conditions for the ith reflected fields from the wall are derived from 
(4.2) and (4.3): 

( 4 . 1 0 ~ )  

(4.10b) 

(4 .10~)  

(4.10d) 

The solution for @$ is obtained by applying complex Fourier transforms on z and 
y in (2.16) and (4.10a,c), with the result 

( 4 . 1 1 ~ )  

This reflected electrical potential may be interpreted as arising from the reflection 
of the imposed field E', e, from a fictitious sphere equal in size to the actual sphere, 
its location being at the mirror-image position of the actual sphere with respect to 
the plane z = b (i.e. at x = 2b, y = 0, z = 0). With knowledge of ug),  @:) and @(l) w ,  

u$) can be found by fitting the boundary conditions (4.10b,d) with the general 
solution of (2.19) established by Faxen (see Happel & Brenner 1973, p. 323), which 
results in 

= - iE,  a3z[(2b- x ) 2  +y2 + 21-i. 

- [l + 2( 1 --y) (mb -mx- l)]  -e ,  +-e,  da da, (4.11 b) r: E )I 
where y = [,/gp, m = (az++pa)i and i = - 1. 

The contributions of @$) and u&" to the particle velocity are determined using (4.4) : 

(4.120) 

ut) = [ V $ ) + + ~ V ~ ~ $ ) ] , . _ ~  = [(-Q+*)A3+i(l-y)A5] Uoez (4.12b) 

and ( 4 . 1 2 ~ )  

Note that the reflected electrical potential from the wall increases the electrophoretic 
velocity of the particle, while the reflected velocity field tends to decrease the 
magnitude of the particle velocity. Also, the wall correction to the sphere velocity 
is found to be O(A3), which is different from that obtained for the sedimentation 
problem, in which the leading wall correction is O(A) .  

Substituting the results of first reflection into the boundary conditions (4.8), the 
second reflected electrical potential and velocity fields from the particle are obtained 
using (3.7), (3.20) and the derivation by Brenner (19643): 

( 4 . 1 3 ~ )  @p) = E,[-&A3a3r-2 c ~ s f ? - & A ~ a ~ r - ~  cos8 sin8 cos#+O(A5a5)], 

up)  = Uo[&A3a3r-3(cos 8 e, + + sin 8 e,) 

+g(l--y)A4a2r-2 cos8 sin8 cos$ er+O(A4a4,A5a3)]. (4.13b) 
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FIQURE 3. Normalized electrophoretic mobility (aa computed from (4.16) and (4.26)) and Stokes 
mobility (as obtained from (4.17) and Brenner 1961) of a sphere near single plane walls. 

Here the h4a2 term in (4.13b) results from the contribution of the O(VE$)) field 
according to (3.20). 

The boundary conditions on the second reflected fields from the wall are obtained 
by substituting the results for @J!) and 06") into (4.10), with which (2.16) and (2.19) 
can be solved as before to give the following: 

AT:) = (&A3)2EmeZ+O(A7), (4.14a) 

u&2) = ( -++w)AsU,e,+O(A7).  (4.14b) 

The contribution of the second reflected fields to the particle velocity is obtained by 
putting E(,2) and u&2) into (4.4), which gives 

(4.15) 

The error is O(A8) because the O(h7) terms in the expansions of s:) and u&2) vanish 
at the centre of the particle. 

With the combination of (4.7c), (4 .12~)  and (4.15), the particle velocity can be 
expressed as 

(4.16) U =I1 - ~ A 3 + + A S - ~ A 6 + O ( A 8 ) ] - ( ~ p - ~ w )  Ewe, .  

The wall does not deflect the direction of electrophoresis; rather, the particle moves 
either with or against the applied electric field, depending only on the zeta potential 

E 
Ur2) = [ - w6 + O(A8)] - ( Cp - &) Em e, . 

4x7 

E 

4n7 
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difference between the particle and the wall, at a rate that decreases as the particle 
approaches the wall (A+ 1). 

For the motion of a sphere on which a constant force Fez (e.g. a gravitational field) 
is applied parallel to a plane wall, Faxen obtained the following expression for the 
particle velocity (see Happel & Brenner 1973, p. 327): 

1 

(4.17) 

Figure 3 gives a comparison between (4.16) and (4.17). Obviously, the wall effect on 
electrophoresis is much weaker than that on a sedimenting particle. 

Motion normal to an in.ni te  plane wall 
Consider the electrophoresis of non-conducting sphere normal to a perfectly con- 
ducting plane wall, as shown in figure 2(b). We need to solve (2.16) and (2.19) with 
the boundary conditions given in (4.1), and with (4.2) and (4.3) replaced by 

( x  = b ) ;  
@ = - E E , b ,  

v = O  

(r+oo,  z < b) .  
@+-E,z ,  

o+o 

(4 .18~)  

(4.18b) 

(4.186) 

(4.18d) 

The condition (4.18a) results from (2.22) and (4.18c), and (4.18b) is derived from 
(2.20b). There is no electrokinetic tangential velocity at the plane wall because there 
is no tangential component of electric field. In this problem, all the +dependent 
terms in the equations vanish because of axial symmetry. 

When h = a/b 4 1, the method of reflections can also be used. With the series 
expansions of electrical potential and velocity in (4.5) and the particle velocity in (4.6), 
it can be found that 

@$) = -Em z, o$) = 0 (4.19a, b)  

and (4.19 c) 

The boundary conditions for the ith reflected electrical potential and velocity fields 
from the particle, given in (4.8) and the solution of @:) and 06') in (4.9), are still valid 
here, but the boundary conditions for the ith reflected fields from the plane wall differ 
from the previous situation because the electrical potential on the wall is uniform : 

(4 .20~)  

(4.20b) 

(4.20 c) 

(4.20 d )  

The solution for @$ can be obtained by applying Hankel transforms on the 

(4.21 a) 

variable p in (2.16) and (4.20), with the result 

@$) = +E,as(2b-x) [ (2b-~ )~+p~] -%,  
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and u$ can also be solved by applying Hankel transforms (twice) to the Stokes 
equation in the form of the stream function (as used by Sonshine, Cox & Brenner 
1966)’ which results in 

u$) = U, a3 {( - [(2b - z ) ~  +pa]-:  + [ip2 - 6 ( b  - 2 )  (2b - z ) ]  [(2b - z ) ~  +pz] -!  

+ 15p2( b - 2 )  (2b - 2) [ (2b - z ) ~  + p a ] - : )  e, + ( - ip(4b - 32) [ (2b - z ) ~  + p 2 ] - t  

+ 15p(b - z) (2b - z ) ~  [(2b - z ) ~  + p2]-3)  ep}. (4.21b) 

Substituting a$) and ug) into (4.4)’ we have 

or 

(4.22 a )  

[u~)++z2Vzu$)] , , ,  = [ -*A3+iA5]  Uoe, ,  (4.22b) 

(4 .22~)  

Note that the reflected electric field reduces the particle velocity in this case, which 
is opposite to the effect of a non-conducting parallel wall. 

In a similar way to the previous case, the results of the second reflection can be 
obtained with knowledge of the first reflection, and are summarized as follows: 

= E,[&A3a3r-2 C O S ~ + & A ~ U ~ ~ - ~ ( ~  C O S ~  8- 1)+0(A5a5)] ,  (4 .23~)  

u(2) = U,[ - iA3a3r-3( cos 8 e,  + t sin 8 ee) P 

+EA4aV2(3 cos28-1) e,+O(h4a4, A5a3)], (4.233) 

and 

(4.24a, b )  

(4.25) 

The combination of (4.19c), (4 .22~)  and (4.25) gives the following expression for the 
wall-corrected electrophoretic velocity : 

€6 
4x9 

U = [ 1 -$A3 + :A5 -%A6 + O(A8)] E ,  e, . (4.26) 

For the motion of a sphere perpendicular to a plane wall caused by a constant force 
Fez, the exact result of the particle velocity was developed by Brenner (1961). A 
comparison between this Stokes’ law correction and (4.26) is given in figure 3. 

5. Electrophoresis in long pores 
Considered in this section is the electrophoresis of a non-conducting sphere in an 

infinitely long pore. The pore is assumed to be either a circular cylinder of radius R 
or a slit of half-width B; the pore walls are considered to be non-conducting. The 
sphere’s centre is still chosen to be the origin of the coordinate system, and the sphere 
moves along the axis of the cylinder (as shown in figure 4u) or in the central plane 
of the slit (as shown in figure 4b) under a uniform imposed electric field Em e,. 
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Em ez 

/////r///rl-// 
FIGURE 4. Electrophoresis of a spherical particle along the axis of 

infinitely long pores: (a)  circular cylinder; ( b )  slit. 

Slit pore 
For the problem of electrophoresis in the midplane between two parallel walls (figure 
4b), the boundary conditions corresponding to governing equations (2.16) and (2.19) 
are given by (4.1) and the following: 

1 e;V@ = 0, 

I @-+-E,z, 

(5.1 a) 

(5.lb) 

( 5 . 2 ~ )  

(5.2b) 

Letting h = a /B  -4 1, the method of reflections employed in $4 can also be used to 
solve this problem. Using a series expansion of the same form as (4.5)-(4.6), it  can 
be shown that the unreflected fields described by (4.7), the boundary conditions for 
the reflected fields from the particle in (4.8), and the first reflected fields in (4.9) are 
all valid here. The boundary conditions for the ith reflected fields from the wall are 
derived from (5.1) and (5.2): 

( 5 . 3 ~ )  

(5.3b) 
(1x1 = B ) ;  

e,*V@$) = -ee,-V@g) 

4x7 
v$) = - vg) + - 4, V [ @ p  + @$)I 
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(5.3c) 

(5.34 

Then the first reflected fields can be solved by the same method as used for a single 
parallel wall in $4 with the results 

(5.44 

i/3 [( 1-7) sinh (mz) - (1 - y )  mz cosh (mx) + g  sinh (mz)] e, 

+ [ ( l - y ) m z  sinh(mz)-gcosh(mz)] dads, (5.4b) 

where 

y = Cw/Cp, m = (a2+p)i and g = mB-+(l-ee-2mB )+y-ymB coth(mB). 

Substituting @$) and v$) into (4.4) and utilizing the Gauss-Laguerre quadrature for 
the numerical integrations, we obtain the contributions to the particle velocity due 
to first wall-reflected fields : 

2 4 [ - VCD$)]~-, = d ,  A3 U, e, , 

[ U $ ) + ~ ~ V ~ U $ ) ] , . - ~  = { [ - d , + d , ( l  - y ) ] h 3 + d , ( l  - y ) h 5 }  Uoe,,  

( 5 . 5 ~ )  

(5.56) 

47v 

€ 
which add to give UCl) = ( d ,  h3 + d ,  As)  - (Cp - 6) E ,  e, . 

4=11 
(5.5c) 

Here 
1 ,  

d ,  = - n-' = 0.150257, 
8 n-1 

1 O0 p2(1 - p  cothp) 
dp = - 0.267 699, 

= 2 lo sinh (2p) - 2p 

d ,  = f jOm p4 dp = 0.338324. 
sinh (2p) - 2p 

Using the methods of $4 the second reflections are obtained: 

@f) = - @, A3E, a3r-, cos 8 + O(A5a5), 

up) = d,h3UOa3r-3(cose e,.+$ sine ee)+o(h5a3), 

B!$) = (d ,  h3), E ,  e, + O(h8), 

( 5 . 6 ~ )  

(5.6b) 

( 5 . 7 ~ )  

(5.7 b )  = d ,  h3[ - d ,  + d,(i - y ) ]  A ~ U ,  e, + o(h8) 

(5.8) 
8 

and Ur2) = [ ( d ,  h3) (d ,  A,) + O(h*)] - (Cp - cw) E ,  e, . 
4x11 

Combination of (4.7c), (5 .5~)  and (5.8) gives the wall-corrected particle velocity : 

U = [l - 0.267699A3 +0.338 324A5 -0.040224he + O(h8)] 8 (Cp - Cw) E ,  e, . (5.9) 
4x11 
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FIOURE 5. Normalized electrophoretic mobility (as computed from equations (5.9) and (5.19)) and 
Stokes mobility (as obtained from (5.10) and Happel & Brenner 1973, p. 318) of a sphere on the 
axis of infinitely long pores. 

Faxen obtained the following correction to Stokes' law for a sphere moving on the 

U = [ 1 - 1.004h + 0.41 8Aa + 0.2 1 A4 - 0.1 69A6 + O( A s ) ]  - Fez . (5.10) 

Figure 5 shows the difference between (5.9) and (5.10) to compare the wall corrections. 
Obviously the wall effect in electrophoresis is much weaker. Comparing (5.9) and 
(5.10) for the slit case with (4.16) and (4.17) for the case of a single wall, we find that 
the assumption that the results for two walls can be obtained by simple addition of 
the single-wall effect gives too small a correction to electrophoresis, while for the 
sedimentation problem this approximation overestimates the wall correction. 

central plane of a slit (Happel k Brenner 1973, p. 327) : 
1 

6xva 

Circular cylindrical pore 
Consider the electrophoresis of a sphere along the axis of a long circular cylinder, as 
shown in figure 4(a).  There is no #-dependence in any of the fields because of axial 
symmetry. We need to solve (2.16) and (2.19) subject to the boundary conditions 
given in (4.1) and the following: 

I e;V@ = 0, (5.1 1 a)  

(5.11b) 
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@+-E,Z, (5.12 a) 

(5.12b) 

With A = a / R  < 1 (4.5)-(4.9) remain valid here. From (5.11) and (5.12), the 

(5.1 3 a) 

(5.13b) 

(5.13~) 

(5.13d) 

The solution for the first reflected electrical potential from the cylinder wall can be 
obtained by applying Fourier sine transforms on the variable z in (2.16) and (5.13a, c), 
and the result is 

w K,o I, (5 w )  sin (G w )  dw, 
x Il(4 

(5 .14~)  

where I,(w) and K,(w) are modified Bessel functions of the first and second kind 
respectively. The first wall-reflected velocity field can be solved by applying Fourier 
cosine transforms (twice) on the variable z in the Stokes equation and boundary 
conditions (5.13b, d) in the form of a stream function. The result is 

u A3 
dl) W = x lom { [ 2A1(w) I ,  ($ w )  + A,@) 5 w I ,  ($0) +A2(@)  I ,  ($ w ) ]  cos ( i w )  e, 

- w 2 [ 4 ( w )  4 ( w )  + I  0 ( a) K2(0)l+Ywlo(w) [ 4 ( w ) l - l  
[4(w)12-Io(w) 

A2(o) = 

Using the Gauss-Laguerre quadrature, we obtain 

(5 .15~)  

[ ~ ~ ) + ~ ~ V ~ u & l ) ] , , ,  = [ [ - d 4 + d S ( 1 - y ) ] A 3 + d g ( l - y ) A s ]  Uoe, ,  (5.15b) 

4 
-P [ - V@&l)],,, = d, A3 U,  e, , 
4x11 

where d, = JOw w 2 m d w  = 0.79683, 
Il(4 

w2 
dw = 1.89632. 

1 
de = 3x JOW [11(w)]2-10(w) 12(w) 
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Url) is found by substituting the above equations into (4.4) : 

E V') = (d, A3 + d, A') - (Cp - CW) E m  e, . 
4x7 

(5 .15~)  

The results of second reflection are obtained by using (3.7), (3.20) and Brenner's 
(1964b) analysis for the second particle disturbances, and Fourier sine and cosine 
transforms on z for the second wall disturbances. The results are 

@(a)  P = -+i4A3Ema3r-2 cos8+O(A5a5), 

vF) = d , A3 U , ~ ~ r - ~ ( c o s 8  e,++ sin8 e0)+O(A6a3), 

B$ = (d, A3)2 Em e, + O(A8), 

u c )  = d, As[ -d4 + d5( 1 -?)I h3U0 e, + O(A8) 

( 5 . 1 6 ~ )  

(5.16b) 

( 5 . 1 7 ~ )  

(5.17b) 

and 
6 

Ur2) = [ (d4A3)  (d,A3)+O(A8)]-(Cp-Cw) Ewe, .  
4x7 

(5.18) 

The wall-corrected particle velocity that results from the addition of equations (4.7c), 
(5 .15~)  and (5.18) is 

E 
U =  [1-l.28987A3+ 1.89632A5-1.02780h~+0(A8)]- (Cp-Cw) Erne,.  (5.19) 

4x7 

The wall effect of a circular pore is significantly greater than for a slit (see (5.9)). A 
comparison between the well-known Stokes' law correction for a sphere translating 
along the cylinder axis (Happel t Brenner 1973, p. 318) and (5.19) is made in figure 5. 
Again, the wall effect on sedimentation is much greater. 

6. Discussion 
Boundary effects on electrophoresis in the limit KU+ 00 are much weaker than for 

sedimentation. As seen in (4.16), (4.26), (5.9) and (5.19), the leading order is A3, 
compared with A for sedimentation. Figures 3 and 5 make the comparison obvious. 
The reason for the weaker boundary effect on electrophoresis is that the disturbance 
to both the applied electric field and the fluid velocity field caused by the moving 
particle in an unbounded fluid decay as r-3 (see (3.8) and (3.20)) instead of as a 
Stokeslet (r- l )  characteristic of a particle moving under the influence of a body force. 
Electrophoresis is an example of ' phoretic motion ', which also includes thermo- 
capillary motion of fluid drops (Young, Goldstein t Block 1959), diffusiophoresis of 
solid particles (Anderson et al. 1982; Prieve et al. 1984) and osmophoresis of 
vesicles (Anderson 1983). All such motions result from an interaction between an 
applied field and a thin fluid layer at the surface of the particle. Outside this layer 
there is no interaction with the applied field, and hence the hydrodynamic force on an 
imaginary boundary enclosing the particle plus interfacial layer must be zero. This 
leads to an r-" decay of the fluid velocity about a moving particle with n 2 2; 
spherical symmetry with a constant applied field requires n = 3. 

Another peculiarity of electrophoresis in bounded fluids is the existence of 
electro-osmotic flow (Adamson 1982) due to the interaction between the applied field 
and the boundary in the absence of the sphere. This effect is expressed by the -cw 
term in the O(Ao) coefficient of (4.16), (5.9) and (5.19). Note that the direction of 
particle motion is determined by the difference in zeta potentials cp-cw. These 
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equations apply to an open system in which there are no pressure gradients 
established far from the particle; that is, a net electro-osmotic flow is allowed to occur. 
In  electrophoretic experiments, however, the system is usually closed such that the 
mean fluid flow is zero. To achieve this condition, pressure gradient-s arise to force 
the fluid against the electro-osmotic flow and hence the velocity field in the absence 
of the particle can be complex (Hunter 1981). The effect of this pressure-driven 
‘backflow’ on particle velocity must be assessed for the particular geometric 
configuration of the apparatus or porous medium. Such questions of how to apply 
the hydrodynamic results of this paper to interpret actual electrophoretic data or to 
predict particle fluxes due to electrophoresis will be addressed elsewhere. 

The result (4.26) applies to the electrophoresis of particles toward a constant 
potential electrode, a situation encountered in electro-deposition of colloids at 
metallic surfaces. Because the boundary is at  uniform potential, there is no tangent 
electric field at the boundary and hence no electro-osmotic flow in this problem; the 
particle velocity is independent of &, in this case. Our result shows that charged 
particles can be forced toward surfaces by the electrophoresis without significant 
hindrance (say, 25 yo) until the surface-to-surface separation is about 0.4 or less of the 
particle radius, whereas such hindrances to diffusional fluxes occur when the separa- 
tion is as large as 5 times the particle radius (see figure 3). Morrison & Stukel (1970) 
also considered this electrophoretic motion and solved the electrostatic and hydro- 
dynamic problems using bipolar coordinates with numerical evaluation of the 
coefficients appearing in the general solution. Because their numerical results are 
only presented in a small graph, a clear comparison with our analytical results 
cannot be made. 

This research was supported by the National Science Foundation and the 
Westvaco Corporation. 
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